All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reconstructing a String from its Lyndon Arrays

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00313940" target="_blank" >RIV/68407700:21240/18:00313940 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.tcs.2017.04.008" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2017.04.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2017.04.008" target="_blank" >10.1016/j.tcs.2017.04.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reconstructing a String from its Lyndon Arrays

  • Original language description

    Given a string x = x[1.. n] on an ordered alphabet of size σ , the Lyndon array λ = λx [1..n] of x is an array of positive integers such that λ[i], 1 <= i <= n, is the length of the maximal Lyndon word over the ordering of that begins at position i in x. The Lyndon array has recently attracted considerable attention due to its pivotal role in establishing the long-standing conjecture that ρ (n ) < n, where ρ ( n) is the maximum number of maximal periodicities (runs) in any string of length n. Here we first describe two linear-time algorithms that, given a valid Lyndon array λ, compute a corresponding string — one for an alphabet of size n, the other for a smaller alphabet. We go on to describe another linear-time algorithm that determines whether or not a given integer array is a Lyndon array of some string. Finally we show how σ Lyndon arrays λ = {λ1 = λ, λ2 , . . . , λσ } corresponding to σ “rotations” of the alphabet can be used to determine uniquely the string x on such that λx = λ.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

    1879-2294

  • Volume of the periodical

    710

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    8

  • Pages from-to

    44-51

  • UT code for WoS article

    000424958900006

  • EID of the result in the Scopus database