Comparing rule mining approaches for classification with reasoning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00324715" target="_blank" >RIV/68407700:21240/18:00324715 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Comparing rule mining approaches for classification with reasoning
Original language description
Classification serves an important role in domains such as network security or health care. Although these domains require understanding of the classifier’s decision, there are only a few classification methods trying to justify or explain their results. Classification rules and decision trees are generally considered comprehensible. Therefore, this study compares the classification performance and comprehensibility of a random forest classifier with classification rules extracted by Frequent Item Set Mining, Logical Item Set Mining and by the Explainer algorithm, which was previously proposed by the authors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 18th Conference Information Technologies - Applications and Theory (ITAT 2018)
ISBN
9781727267198
ISSN
—
e-ISSN
1613-0073
Number of pages
7
Pages from-to
52-58
Publisher name
CEUR Workshop Proceedings
Place of publication
Aachen
Event location
Krompachy
Event date
Sep 21, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—