All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical Motion Tracking Using Matching of Sparse Features

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F18%3A00330726" target="_blank" >RIV/68407700:21240/18:00330726 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/18:00497814

  • Result on the web

    <a href="http://dx.doi.org/10.1109/SITIS.2018.00075" target="_blank" >http://dx.doi.org/10.1109/SITIS.2018.00075</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SITIS.2018.00075" target="_blank" >10.1109/SITIS.2018.00075</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical Motion Tracking Using Matching of Sparse Features

  • Original language description

    Fundamental approaches in motion tracking are based on registration of pixel patches from one frame to another. To ensure invariance to some changes in the image and improve the speed of discovering a match, a pyramidal approach is used to steer the process faster to optima. However, registration of the patches in high resolution is still computationally expensive. Because we require the algorithm to process Ultra HD video content in real time on commonly available hardware, especially on mid-tier graphics processing units, approaches using matching of pixel patches are not feasible. In this paper, we present and evaluate an approach inspired by motion tracking on an image pyramid. However, instead of comparing pixel patches one to another, we utilise binary image descriptors that are much shorter and inherently use a Hamming distance for their direct comparison. Evaluation of our implementation, which is available on GitHub, was carried out on the Multiple Object Tracking challenge dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 14th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

  • ISBN

    978-1-5386-9385-8

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    449-456

  • Publisher name

    IEEE Computer Society

  • Place of publication

    Los Alamitos

  • Event location

    Las Palmas de Gran Canaria

  • Event date

    Nov 26, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article