Using Raspberry Pi for Measuring Pedestrian Visiting Patterns via WiFi-Signals in Uncontrolled Field Studies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00316337" target="_blank" >RIV/68407700:21240/19:00316337 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/19:00316337
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-030-11440-4_28" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-11440-4_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-11440-4_28" target="_blank" >10.1007/978-3-030-11440-4_28</a>
Alternative languages
Result language
angličtina
Original language name
Using Raspberry Pi for Measuring Pedestrian Visiting Patterns via WiFi-Signals in Uncontrolled Field Studies
Original language description
The research on pedestrian behavior includes empirical field studies and the methods for data acquisition are versatile. However, a low-budget approach that can be applied to measure pedestrian destination choice in large-scale uncontrolled field studies is still needed. The measurement of destination choice patterns is important for validating strategic models, which explain how pedestrians visit locations to perform activities.We propose a Raspberry Pi approach for WiFi-based measurements without using existing WiFi-infrastructures. The proposed method is useful for recording the microscopic dynamics and macroscopic crowd dynamics of largescale uncontrolled field studies, e.g. public events. Furthermore, we provide concept for strategic model validation that is based on the measured WiFi-signal data.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
<a href="/en/project/GA15-15049S" target="_blank" >GA15-15049S: Detection of stochastic universalities in non-equilibrium states of socio-physical systems by means of Random Matrix Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Traffic and Granular Flow '17
ISBN
978-3-030-11439-8
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
245-253
Publisher name
Springer Nature Switzerland AG
Place of publication
Basel
Event location
Washington, DC, DC, USA
Event date
Jul 19, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—