Content-aware Collaborative Filtering in Point-ofInterest Recommendation Systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F19%3A00334915" target="_blank" >RIV/68407700:21240/19:00334915 - isvavai.cz</a>
Result on the web
<a href="https://hi.kkui.fei.tuke.sk/daz2019/DaZ_WIKT_2019_Zbornik.pdf" target="_blank" >https://hi.kkui.fei.tuke.sk/daz2019/DaZ_WIKT_2019_Zbornik.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Content-aware Collaborative Filtering in Point-ofInterest Recommendation Systems
Original language description
With the availability of the vast amount of users and Location-based social networks, the problem of POI recommendations has been widely studied and received significant research attention in the last years. While previous works of POI recommendation mostly focused on investigating the spatial, temporal, and social influence, the use of additional content information has not been directionally studied. In this paper, we propose the content-aware matrix factorization method based on incorporating POI attributes and categories information. We propose two variants of the algorithm that can work with an explicit and implicit feedback. Experimental results show that the proposed method improves the quality of recommendation and outperforms most state-ofthe-art collaborative filtering algorithms.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
DATA A ZNALOSTI & WIKT 2019
ISBN
978-80-553-3354-0
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
20-25
Publisher name
Technická univerzita v Košiciach
Place of publication
Košice
Event location
Košice
Event date
Oct 10, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—