All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00345585" target="_blank" >RIV/68407700:21240/20:00345585 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.ISAAC.2020.36" target="_blank" >https://doi.org/10.4230/LIPIcs.ISAAC.2020.36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2020.36" target="_blank" >10.4230/LIPIcs.ISAAC.2020.36</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters

  • Original language description

    In the presented paper, we study the Length-Bounded Cut problem for special graph classes as well as from a parameterized-complexity viewpoint. Here, we are given a graph G, two vertices s and t, and positive integers β and λ. The task is to find a set F of edges of size at most β such that every s-t-path of length at most λ in G contains some edge in F. Bazgan et al. [Networks, 2019] conjectured that Length-Bounded Cut admits a polynomial-time algorithm if the input graph G is a proper interval graph. We confirm this conjecture by providing a dynamic-programming based polynomial-time algorithm. Moreover, we strengthen the W[1]-hardness result of Dvořák and Knop [Algorithmica, 2018] for Length-Bounded Cut parameterized by pathwidth. Our reduction is shorter, and the target of the reduction has stronger structural properties. Consequently, we give W[1]-hardness for the combined parameter pathwidth and maximum degree of the input graph. Finally, we prove that Length-Bounded Cut is W[1]-hard for the feedback vertex number. Both our hardness results complement known XP algorithms.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    31st International Symposium on Algorithms and Computation (ISAAC 2020)

  • ISBN

    978-3-95977-173-3

  • ISSN

  • e-ISSN

    1868-8969

  • Number of pages

    14

  • Pages from-to

    "36:1"-"36:14"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Hong Kong

  • Event date

    Dec 14, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article