All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Recognizing Proper Tree-Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F20%3A00345588" target="_blank" >RIV/68407700:21240/20:00345588 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Recognizing Proper Tree-Graphs

  • Original language description

    We investigate the parameterized complexity of the recognition problem for the proper H-graphs. The H-graphs are the intersection graphs of connected subgraphs of a subdivision of a multigraph H, and the properness means that the containment relationship between the representations of the vertices is forbidden. The class of H-graphs was introduced as a natural (parameterized) generalization of interval and circular-arc graphs by Biró, Hujter, and Tuza in 1992, and the proper H-graphs were introduced by Chaplick et al. in WADS 2019 as a generalization of proper interval and circular-arc graphs. For these graph classes, H may be seen as a structural parameter reflecting the distance of a graph to a (proper) interval graph, and as such gained attention as a structural parameter in the design of efficient algorithms. We show the following results. - For a tree T with t nodes, it can be decided in 2^{????(t(2) log t)} ⋅ n3 time, whether an n-vertex graph G is a proper T-graph. For yes-instances, our algorithm outputs a proper T-representation. This proves that the recognition problem for proper H-graphs, where H required to be a tree, is fixed-parameter tractable when parameterized by the size of T. Previously only NP-completeness was known. - Contrasting to the first result, we prove that if H is not constrained to be a tree, then the recognition problem becomes much harder. Namely, we show that there is a multigraph H with 4 vertices and 5 edges such that it is NP-complete to decide whether G is a proper H-graph.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    15th International Symposium on Parameterized and Exact Computation (IPEC 2020)

  • ISBN

    978-3-95977-172-6

  • ISSN

  • e-ISSN

    1868-8969

  • Number of pages

    15

  • Pages from-to

    "8:1"-"8:15"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Hong Kong

  • Event date

    Dec 14, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article