Joint direct and transposed sparse matrix-vector multiplication for multithreaded CPUs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00346816" target="_blank" >RIV/68407700:21240/21:00346816 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/cpe.6236" target="_blank" >https://doi.org/10.1002/cpe.6236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cpe.6236" target="_blank" >10.1002/cpe.6236</a>
Alternative languages
Result language
angličtina
Original language name
Joint direct and transposed sparse matrix-vector multiplication for multithreaded CPUs
Original language description
Repeatedly performing sparse matrix-vector multiplication (SpMV) followed by transposed sparse matrix-vector multiplication (SpMᵀV) with the same matrix is a part of several algorithms, for example, the Lanczos biorthogonalization algorithm and the biconjugate gradient method. Such algorithms can benefit from combining parallel SpMV and SpMᵀV into a single operation we call `joint direct and transposed sparse matrix-vector multiplication’ (SpMMᵀV). In this article, we present a parallel SpMMᵀV algorithm for shared-memory CPUs. The algorithm uses a sparse matrix format that divides the stored matrix into sparse matrix blocks and compresses the row and column indices of the matrix. This sparse matrix format can be also used for SpMV, SpMᵀV, and similar sparse matrix-vector operations. We expand upon existing research by suggesting new variants of the parallel SpMMᵀV algorithm and by extending the algorithm to efficiently support symmetric matrices. We compare the performance of the presented parallel SpMMᵀV algorithm with alternative approaches, which use state-of-the-art sparse matrix formats and libraries, using sparse matrices from real-world applications. The performance results indicate that the median performance of our proposed parallel SpMMᵀV algorithm is up to 45% higher than of the alternative approaches.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Concurrency and Computation: Practice and Experience
ISSN
1532-0626
e-ISSN
1532-0634
Volume of the periodical
33
Issue of the periodical within the volume
13
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
1-26
UT code for WoS article
000620329400001
EID of the result in the Scopus database
2-s2.0-85101241296