Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350486" target="_blank" >RIV/68407700:21240/21:00350486 - isvavai.cz</a>
Result on the web
<a href="https://ojs.aaai.org/index.php/AAAI/article/view/17472" target="_blank" >https://ojs.aaai.org/index.php/AAAI/article/view/17472</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal Vertex Ordering
Original language description
We introduce multi-goal multi agent path finding (MG-MAPF) which generalizes the standard discrete multi-agent path finding (MAPF) problem. While the task in MAPF is to navigate agents in an undirected graph from their starting vertices to one individual goal vertex per agent, MG-MAPF assigns each agent multiple goal vertices and the task is to visit each of them at least once. Solving MG-MAPF not only requires finding collision free paths for individual agents but also determining the order of visiting agent's goal vertices so that common objectives like the sum-of-costs are optimized. We suggest two novel algorithms using different paradigms to address MG-MAPF: a heuristic search-based algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the satisfiability modulo theories (SMT), called SMT-Hamiltonian-CBS (SMT-HCBS).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Intelligent Algorithms for Generalized Variants of Multi-Agent Path Finding</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
—
Number of pages
9
Pages from-to
12409-12417
Publisher name
AAAI Press
Place of publication
Menlo Park
Event location
Virtual
Event date
Feb 2, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000681269804010