Application of Distance Metric Learning to Automated Malware Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350566" target="_blank" >RIV/68407700:21240/21:00350566 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >https://doi.org/10.1109/ACCESS.2021.3094064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >10.1109/ACCESS.2021.3094064</a>
Alternative languages
Result language
angličtina
Original language name
Application of Distance Metric Learning to Automated Malware Detection
Original language description
Distance metric learning aims to find the most appropriate distance metric parameters to improve similarity-based models such as k -Nearest Neighbors or k -Means. In this paper, we apply distance metric learning to the problem of malware detection. We focus on two tasks: (1) to classify malware and benign files with a minimal error rate, (2) to detect as much malware as possible while maintaining a low false positive rate. We propose a malware detection system using Particle Swarm Optimization that finds the feature weights to optimize the similarity measure. We compare the performance of the approach with three state-of-the-art distance metric learning techniques. We find that metrics trained in this way lead to significant improvements in the k -Nearest Neighbors classification. We conducted and evaluated experiments with more than 150,000 Windows-based malware and benign samples. Features consisted of metadata contained in the headers of executable files in the portable executable file format. Our experimental results show that our malware detection system based on distance metric learning achieves a 1.09 % error rate at 0.74 % false positive rate (FPR) and outperforms all machine learning algorithms considered in the experiment. Considering the second task related to keeping minimal FPR, we achieved a 1.15 % error rate at only 0.13 % FPR.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Volume of the periodical
2021
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
96151-96165
UT code for WoS article
000673609900001
EID of the result in the Scopus database
2-s2.0-85110818606