All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Application of Distance Metric Learning to Automated Malware Detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00350566" target="_blank" >RIV/68407700:21240/21:00350566 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >https://doi.org/10.1109/ACCESS.2021.3094064</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2021.3094064" target="_blank" >10.1109/ACCESS.2021.3094064</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Application of Distance Metric Learning to Automated Malware Detection

  • Original language description

    Distance metric learning aims to find the most appropriate distance metric parameters to improve similarity-based models such as k -Nearest Neighbors or k -Means. In this paper, we apply distance metric learning to the problem of malware detection. We focus on two tasks: (1) to classify malware and benign files with a minimal error rate, (2) to detect as much malware as possible while maintaining a low false positive rate. We propose a malware detection system using Particle Swarm Optimization that finds the feature weights to optimize the similarity measure. We compare the performance of the approach with three state-of-the-art distance metric learning techniques. We find that metrics trained in this way lead to significant improvements in the k -Nearest Neighbors classification. We conducted and evaluated experiments with more than 150,000 Windows-based malware and benign samples. Features consisted of metadata contained in the headers of executable files in the portable executable file format. Our experimental results show that our malware detection system based on distance metric learning achieves a 1.09 % error rate at 0.74 % false positive rate (FPR) and outperforms all machine learning algorithms considered in the experiment. Considering the second task related to keeping minimal FPR, we achieved a 1.15 % error rate at only 0.13 % FPR.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Volume of the periodical

    2021

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    96151-96165

  • UT code for WoS article

    000673609900001

  • EID of the result in the Scopus database

    2-s2.0-85110818606