All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Image Inpainting Using Wasserstein Generative Adversarial Imputation Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00351375" target="_blank" >RIV/68407700:21240/21:00351375 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-86340-1_46" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-86340-1_46</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86340-1_46" target="_blank" >10.1007/978-3-030-86340-1_46</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Image Inpainting Using Wasserstein Generative Adversarial Imputation Network

  • Original language description

    Image inpainting is one of the important tasks in computer vision which focuses on the reconstruction of missing regions in an image. The aim of this paper is to introduce an image inpainting model based on Wasserstein Generative Adversarial Imputation Network. The generator network of the model uses building blocks of convolutional layers with different dilation rates, together with skip connections that help the model reproduce fine details of the output. This combination yields a universal imputation model that is able to handle various scenarios of missingness with sufficient quality. To show this experimentally, the model is simultaneously trained to deal with three scenarios given by missing pixels at random, missing various smaller square regions, and one missing square placed in the center of the image. It turns out that our model achieves high-quality inpainting results on all scenarios. Performance is evaluated using peak signal-to-noise ratio and structural similarity index on two real-world benchmark datasets, CelebA faces and Paris StreetView. The results of our model are compared to biharmonic imputation and to some of the other state-of-the-art image inpainting methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-18080S" target="_blank" >GA18-18080S: Fusion-Based Knowledge Discovery in Human Activity Data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Artificial Neural Networks and Machine Learning – ICANN 2021

  • ISBN

    978-3-030-86339-5

  • ISSN

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    575-586

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Bratislava

  • Event date

    Sep 14, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000711922300046