Combinatorics on Words Basics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00353328" target="_blank" >RIV/68407700:21240/21:00353328 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/21:10438501
Result on the web
<a href="https://www.isa-afp.org/entries/Combinatorics_Words.html" target="_blank" >https://www.isa-afp.org/entries/Combinatorics_Words.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Combinatorics on Words Basics
Original language description
We formalize basics of Combinatorics on Words. This is an extension of existing theories on lists. We provide additional properties related to prefix, suffix, factor, length and rotation. The topics include prefix and suffix comparability, mismatch, word power, total and reversed morphisms, border, periods, primitivity and roots. We also formalize basic, mostly folklore results related to word equations: equidivisibility, commutation and conjugation. Slightly advanced properties include the Periodicity lemma (often cited as the Fine and Wilf theorem) and the variant of the Lyndon-Schützenberger theorem for words. We support the algebraic point of view which sees words as generators of submonoids of a free monoid. This leads to the concepts of the (free) hull, the (free) basis (or code).
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA20-20621S" target="_blank" >GA20-20621S: Combinatorics on words formalization</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive of Formal Proofs
ISSN
2150-914X
e-ISSN
2150-914X
Volume of the periodical
—
Issue of the periodical within the volume
May
Country of publishing house
DE - GERMANY
Number of pages
135
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—