All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Project MultiLeap: Making Multiple Hand Tracking Sensors to Act Like One

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00353691" target="_blank" >RIV/68407700:21240/21:00353691 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/abstract/document/9644262" target="_blank" >https://ieeexplore.ieee.org/abstract/document/9644262</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/AIVR52153.2021.00021" target="_blank" >10.1109/AIVR52153.2021.00021</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Project MultiLeap: Making Multiple Hand Tracking Sensors to Act Like One

  • Original language description

    We present a concept that provides hand tracking for virtual and extended reality, only with the use of optical sensors, without the need for the user to hold any physical controller. In this article, we propose five new algorithms further to extend our previous research and the possibilities of the hand tracking system whilst also making it more precise. The first algorithm deals with the need to calibrate the tracking system. Thanks to the new approach, we improved tracking precision by 37% over our previous solution. The second algorithm allows us to compute the precision of the hand tracking data when multiple sensors are used. The third algorithm further improves the computation of hand tracking data confidence by correctly handling the edge cases, for example, when the tracked hand is at the edge of the sensor's field of view. The fourth algorithm provides a new way to fuse the hand tracking data by using only the hand tracking data with the highest hand tracking data confidence. The fifth algorithm deals with the issue when the optical sensor misclassifies the hand chirality.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)

  • ISBN

    978-1-6654-3225-2

  • ISSN

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    77-83

  • Publisher name

    IEEE

  • Place of publication

    Beijing

  • Event location

    Taichung

  • Event date

    Nov 15, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article