Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy Compilation Schemes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00356866" target="_blank" >RIV/68407700:21240/21:00356866 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1109/IROS51168.2021.9636296" target="_blank" >https://doi.org/10.1109/IROS51168.2021.9636296</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS51168.2021.9636296" target="_blank" >10.1109/IROS51168.2021.9636296</a>
Alternative languages
Result language
angličtina
Original language name
Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy Compilation Schemes
Original language description
Path planning for multiple robots (MRPP) represents a task of finding non-colliding paths for robots via which they can navigate from their initial positions to specified goal positions. The problem is often modeled using undirected graphs where robots move between vertices across edges while no two robots can simultaneously occupy the same vertex nor can traverse an edge in opposite directions. Contemporary optimal solving algorithms include dedicated search-based methods, that solve the problem directly, and compilation-based algorithms that reduce MRPP to a different formalism for which an efficient solver exists, such as constraint programming (CP), mixed integer linear programming (MILP), or Boolean satisfiability (SAT). In this paper, we enhance existing SAT-based algorithm for MRPP via sparsification of the set of candidate paths for each robot from which the target Boolean encoding is derived. Suggested sparsification of the set of paths led to a smaller target Boolean formulae that can be constructed and solved faster while optimality guarantees of the approach have been kept.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA19-17966S" target="_blank" >GA19-17966S: intALG-MAPFg: Intelligent Algorithms for Generalized Variants of Multi-Agent Path Finding</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-6654-1714-3
ISSN
2153-0858
e-ISSN
2153-0866
Number of pages
8
Pages from-to
7931-7938
Publisher name
IEEE
Place of publication
Piscataway
Event location
Praha
Event date
Sep 27, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000755125506042