Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358121" target="_blank" >RIV/68407700:21240/22:00358121 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-00123-9_40" target="_blank" >http://dx.doi.org/10.1007/978-3-031-00123-9_40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-00123-9_40" target="_blank" >10.1007/978-3-031-00123-9_40</a>
Alternative languages
Result language
angličtina
Original language name
Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays
Original language description
Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply natively to relational and linear datasets, with distinct separation of the columns or attributes, but do not perform well on multidimensional array scientific data. We propose a new method for multidimensional array indexing that considers the spatial component of multidimensional arrays. The hierarchical indexing method is based on sparse n-dimensional trees for dimension partitioning, and bitmap indexing with adaptive binning for attribute partitioning. This indexing performs well on range queries involving both dimension and attribute constraints, as it prunes the search space early. Moreover, the indexing is easily extensible to membership queries. The indexing method was implemented on top of a state of the art bitmap indexing library Fastbit, using tables partitioned along any subset of the data dimensions. We show that the hierarchical bitmap index outperforms conventional bitmap indexing, where an auxiliary attribute is required for each dimension. Furthermore, the adaptive binning significantly reduces the amount of bins and therefore memory requirements.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Database Systems for Advanced Applications
ISBN
978-3-031-00122-2
ISSN
0302-9743
e-ISSN
—
Number of pages
17
Pages from-to
509-525
Publisher name
Springer, Cham
Place of publication
—
Event location
Hyderabad
Event date
Apr 11, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000873153800040