All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00358121" target="_blank" >RIV/68407700:21240/22:00358121 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-031-00123-9_40" target="_blank" >http://dx.doi.org/10.1007/978-3-031-00123-9_40</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-00123-9_40" target="_blank" >10.1007/978-3-031-00123-9_40</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical Bitmap Indexing for Range Queries on Multidimensional Arrays

  • Original language description

    Bitmap indices are widely used in commercial databases for processing complex queries, due to their efficient use of bit-wise operations. Bitmap indices apply natively to relational and linear datasets, with distinct separation of the columns or attributes, but do not perform well on multidimensional array scientific data. We propose a new method for multidimensional array indexing that considers the spatial component of multidimensional arrays. The hierarchical indexing method is based on sparse n-dimensional trees for dimension partitioning, and bitmap indexing with adaptive binning for attribute partitioning. This indexing performs well on range queries involving both dimension and attribute constraints, as it prunes the search space early. Moreover, the indexing is easily extensible to membership queries. The indexing method was implemented on top of a state of the art bitmap indexing library Fastbit, using tables partitioned along any subset of the data dimensions. We show that the hierarchical bitmap index outperforms conventional bitmap indexing, where an auxiliary attribute is required for each dimension. Furthermore, the adaptive binning significantly reduces the amount of bins and therefore memory requirements.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Database Systems for Advanced Applications

  • ISBN

    978-3-031-00122-2

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    17

  • Pages from-to

    509-525

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Hyderabad

  • Event date

    Apr 11, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000873153800040