All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structural parameterizations of Tracking Paths problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360019" target="_blank" >RIV/68407700:21240/22:00360019 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.tcs.2022.09.009" target="_blank" >https://doi.org/10.1016/j.tcs.2022.09.009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.tcs.2022.09.009" target="_blank" >10.1016/j.tcs.2022.09.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structural parameterizations of Tracking Paths problem

  • Original language description

    Given a graph G with source and destination vertices s,t in V(G) respectively, Tracking Paths asks for a minimum set of vertices T subseteq V(G), such that the sequence of vertices restricted to T encountered in each simple path from s to t is unique. The problem was proven NP-hard [3] and was found to admit a quadratic kernel when parameterized by the size of the desired solution [8]. Following recent trends, for the first time, we study Tracking Paths with respect to structural parameters of the input graph, parameters that measure how far the input graph is, from an easy instance. We prove that Tracking Paths admits fixed-parameter tractable (FPT) algorithms when parameterized by the following parameters: (i) size of a 2-dominating set, (ii) size of cluster vertex deletion set, and (iii) size of split deletion set. En route we also look at Vertex Cover parameterized by the size of edge clique cover and show it fixed-parameter tractable.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Theoretical Computer Science

  • ISSN

    0304-3975

  • e-ISSN

    1879-2294

  • Volume of the periodical

    934

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    91-102

  • UT code for WoS article

    000886060100007

  • EID of the result in the Scopus database

    2-s2.0-85139080527