Problem Compilation for Multi-Agent Path Finding: a Survey
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00360903" target="_blank" >RIV/68407700:21240/22:00360903 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.24963/ijcai.2022/783" target="_blank" >https://doi.org/10.24963/ijcai.2022/783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2022/783" target="_blank" >10.24963/ijcai.2022/783</a>
Alternative languages
Result language
angličtina
Original language name
Problem Compilation for Multi-Agent Path Finding: a Survey
Original language description
Multi-agent path finding (MAPF) attracts considerable attention in artificial intelligence community. The task in the standard MAPF is to find discrete paths through which agents can navigate from their starting positions to individual goal positions. The combination of two additional requirements makes the problem computationally challenging: agents must not collide with each other and the paths must be optimal with respect to some objective. Two major approaches to optimal MAPF solving include dedicated search-based methods, and compilation-based methods that reduce a MAPF instance to an instance in a different formalism, for which an efficient solver exists. In this survey, we summarize major compilation-based solvers for MAPF using CSP, SAT, and MILP formalisms. We explain the core ideas of the solvers in a simplified and unified way while preserving the merit making them more accessible for a wider audience.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logic Reasoning in Motion Planning for Multiple Robotic Agents</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
ISBN
978-1-956792-00-3
ISSN
1045-0823
e-ISSN
—
Number of pages
8
Pages from-to
5615-5622
Publisher name
International Joint Conferences on Artificial Intelligence Organization
Place of publication
—
Event location
Vienna
Event date
Jul 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—