All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Domain Dependent Parameter Setting in SAT Solver Using Machine Learning Techniques

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F22%3A00362980" target="_blank" >RIV/68407700:21240/22:00362980 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-22953-4_8" target="_blank" >https://doi.org/10.1007/978-3-031-22953-4_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-22953-4_8" target="_blank" >10.1007/978-3-031-22953-4_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Domain Dependent Parameter Setting in SAT Solver Using Machine Learning Techniques

  • Original language description

    We address the problem of variable and truth-value choice in modern search-based Boolean satisfiability (SAT) solvers depending on the problem domain. The SAT problem is the task to determine truth-value assignment for variables of a given Boolean formula under which the formula evaluates to true. The SAT problem is often used as a canonical representation of combinatorial problems in many domains of computer science ranging from artificial intelligence to software engineering. Modern complete search-based SAT solvers represent a universal problem solving tool which often provide higher efficiency than ad-hoc direct solving approaches. Many efficient variable and truth-value selection heuristics were devised. Heuristics can usually be fine tuned by single or multiple numerical parameters prior to executing the search process over the concrete SAT instance. In this paper we present a machine learning approach that predicts the parameters of heuristic from the underlying structure of a graph derived from the input SAT instance. Using this approach we effectively fine tune the SAT solver for specific problem domain.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA22-31346S" target="_blank" >GA22-31346S: logicMOVE: Logic Reasoning in Motion Planning for Multiple Robotic Agents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Agents and Artificial Intelligence 14th International Conference, ICAART 2022 Virtual Event, February 3–5, 2022 Revised Selected Papers

  • ISBN

    978-3-031-22952-7

  • ISSN

    2945-9133

  • e-ISSN

    1611-3349

  • Number of pages

    32

  • Pages from-to

    169-200

  • Publisher name

    Springer International Publishing AG

  • Place of publication

    Cham

  • Event location

    Online

  • Event date

    Feb 3, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000971480800008