Inexact tree pattern matching with 1-degree edit distance using finite automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00363988" target="_blank" >RIV/68407700:21240/23:00363988 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.dam.2023.01.003" target="_blank" >https://doi.org/10.1016/j.dam.2023.01.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dam.2023.01.003" target="_blank" >10.1016/j.dam.2023.01.003</a>
Alternative languages
Result language
angličtina
Original language name
Inexact tree pattern matching with 1-degree edit distance using finite automata
Original language description
Given an input tree and a tree pattern, the inexact tree pattern matching problem is about finding all subtrees in the input tree that match the tree pattern with up to errors. To measure the number of errors between two labeled ordered trees, we use the 1-degree edit distance that uses operations node relabel, leaf insert, and leaf delete. The proposed solution is based on a finite automaton that reads a given input tree represented in linear, prefix bar, notation. First, we show its construction for a constrained variant of 1-degree edit distance where leaf insert/delete operations cannot be applied to the tree pattern recursively. Then, we extend this approach to both unit cost and non-unit cost 1-degree edit distance. The deterministic version of the proposed finite automaton finds all inexact occurrences of the tree pattern in time linear to the size of the input tree. However, since the size of such automaton can be exponential in the number of nodes of the tree pattern, it is practical only for small patterns. Therefore, we also consider the dynamic programming approach as a way of simulating the nondeterministic finite automaton. This approach comes with the space complexity and time complexity where is the number of nodes of the tree pattern, is the number of nodes of the input tree, and is the maximum number of errors allowed.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
1872-6771
Volume of the periodical
330
Issue of the periodical within the volume
May
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
78-97
UT code for WoS article
000924453300001
EID of the result in the Scopus database
2-s2.0-85149786736