Shortest Dominating Set Reconfiguration under Token Sliding
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368004" target="_blank" >RIV/68407700:21240/23:00368004 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-43587-4_24" target="_blank" >https://doi.org/10.1007/978-3-031-43587-4_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43587-4_24" target="_blank" >10.1007/978-3-031-43587-4_24</a>
Alternative languages
Result language
angličtina
Original language name
Shortest Dominating Set Reconfiguration under Token Sliding
Original language description
In this paper, we present novel algorithms that efficiently compute a shortest reconfiguration sequence between two given dominating sets in trees and interval graphs under the Token Sliding model. In this problem, a graph is provided along with its two dominating sets, which can be imagined as tokens placed on vertices. The objective is to find a shortest sequence of dominating sets that transforms one set into the other, with each set in the sequence resulting from sliding a single token in the previous set. While identifying any sequence has been well studied, our work presents the first polynomial algorithms for this optimization variant in the context of dominating sets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
<a href="/en/project/GA22-19557S" target="_blank" >GA22-19557S: New Frontiers in Computational Social Choice</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 24th International Symposium on Fundamentals of Computation Theory
ISBN
978-3-031-43586-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
333-347
Publisher name
Springer, Cham
Place of publication
—
Event location
Trier
Event date
Sep 18, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001162288800024