All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368593" target="_blank" >RIV/68407700:21240/23:00368593 - isvavai.cz</a>

  • Result on the web

    <a href="https://proceedings.mlr.press/v220/yip22a.html" target="_blank" >https://proceedings.mlr.press/v220/yip22a.html</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lessons Learned from Ariel Data Challenge 2022 - Inferring Physical Properties of Exoplanets From Next-Generation Telescopes

  • Original language description

    Exo-atmospheric studies, i.e. the study of exoplanetary atmospheres, is an emerging frontier in Planetary Science. To understand the physical properties of hundreds of exoplanets, astronomers have traditionally relied on sampling-based methods. However, with the growing number of exoplanet detections (i.e. increased data quantity) and advancements in technology from telescopes such as JWST and Ariel (i.e. improved data quality), there is a need for more scalable data analysis techniques. The Ariel Data Challenge 2022 aims to find interdisciplinary solutions from the NeurIPS community. Results from the challenge indicate that machine learning (ML) models have the potential to provide quick insights for thousands of planets and millions of atmospheric models. However, the machine learning models are not immune to data drifts, and future research should investigate ways to quantify and mitigate their negative impact.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the NeurIPS 2022 Competitions Track

  • ISBN

  • ISSN

    2640-3498

  • e-ISSN

    2640-3498

  • Number of pages

    17

  • Pages from-to

    1-17

  • Publisher name

    Proceedings of Machine Learning Research

  • Place of publication

  • Event location

    New Orleans

  • Event date

    Nov 28, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article