All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Degreewidth: A New Parameter for Solving Problems on Tournaments

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00368909" target="_blank" >RIV/68407700:21240/23:00368909 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-43380-1_18" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43380-1_18" target="_blank" >10.1007/978-3-031-43380-1_18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Degreewidth: A New Parameter for Solving Problems on Tournaments

  • Original language description

    In the paper, we define a new parameter for tournaments called degreewidth which can be seen as a measure of how far is the tournament from being acyclic. The degreewidth of a tournament T denoted by is the minimum value k for which we can find an ordering of the vertices of T such that every vertex is incident to at most k backward arcs (i.e. an arc such that ). Thus, a tournament is acyclic if and only if its degreewidth is zero. Additionally, the class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly the class of tournaments with degreewidth one. We study computational complexity of finding degreewidth. We show it is NP-hard and complement this result with a 3-approximation algorithm. We provide a -time algorithm to decide if a tournament is sparse, where n is its number of vertices. Finally, we study classical graph problems DOMINATING SET and FEEDBACK VERTEX SET parameterized by degreewidth. We show the former is fixed-parameter tractable whereas the latter is NP-hard even on sparse tournaments. Additionally, we show polynomial time algorithm for FEEDBACK ARC SET on sparse tournaments.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science

  • ISBN

    978-3-031-43379-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    246-260

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Fribourg

  • Event date

    Jun 28, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001162209000018