All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370065" target="_blank" >RIV/68407700:21240/23:00370065 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-48421-6_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-48421-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-48421-6_12" target="_blank" >10.1007/978-3-031-48421-6_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Time-Aware Log Anomaly Detection Based on Growing Self-organizing Map

  • Original language description

    A software system generates extensive log data, reflecting its workload and potential failures during operation. Log anomaly detection algorithms use this data to identify deviations in system behavior, especially when errors occur. Workload patterns can vary with time, depending on factors like the time of day or day of the week, affecting log entry volumes. Thus, it’s essential for log anomaly detection to consider temporal information that captures workload variations. This paper introduces a novel log anomaly detection method that incorporates such time information and demonstrates how smaller models enhance anomaly detection precision. We evaluate this method on a high-throughput production workload of a software system, showcasing its superior performance over conventional log anomaly detection methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Service-Oriented Computing

  • ISBN

    978-3-031-48420-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    9

  • Pages from-to

    169-177

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Rome

  • Event date

    Nov 28, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article