All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterized Max Min Feedback Vertex Set

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370181" target="_blank" >RIV/68407700:21240/23:00370181 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.MFCS.2023.62" target="_blank" >https://doi.org/10.4230/LIPIcs.MFCS.2023.62</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.MFCS.2023.62" target="_blank" >10.4230/LIPIcs.MFCS.2023.62</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterized Max Min Feedback Vertex Set

  • Original language description

    Given a graph G and an integer k, Max Min FVS asks whether there exists a minimal set of vertices of size at least k whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters. Using standard DP techniques, we first present an algorithm of time tw^O(tw) n^O(1), significantly generalizing a recent algorithm of Gaikwad et al. of time vc^O(vc) n^O(1), where tw, vc denote the input graph’s treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a vc^o(vc) n^O(1) algorithm would refute the ETH. With respect to the natural parameter k, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity 10^k n^O(1). We point out that this algorithm is incorrect and present a branching algorithm of complexity 9.34^k n^O(1).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science

  • ISBN

    978-3-95977-292-1

  • ISSN

    1868-8969

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    "62:1"-"62:15"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Bordeaux

  • Event date

    Aug 28, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article