A natural language processing approach to Malware classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00370940" target="_blank" >RIV/68407700:21240/23:00370940 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11416-023-00506-w" target="_blank" >https://doi.org/10.1007/s11416-023-00506-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11416-023-00506-w" target="_blank" >10.1007/s11416-023-00506-w</a>
Alternative languages
Result language
angličtina
Original language name
A natural language processing approach to Malware classification
Original language description
Many different machine learning and deep learning techniques have been successfully employed for malware detection and classification. Examples of popular learning techniques in the malware domain include Hidden Markov Models (HMM), Random Forests (RF), Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM) networks. In this research, we consider a hybrid architecture, where HMMs are trained on opcode sequences, and the resulting hidden states of these trained HMMs are used as feature vectors in various classifiers. In this context, extracting the HMM hidden state sequences can be viewed as a form of feature engineering that is somewhat analogous to techniques that are commonly employed in Natural Language Processing (NLP). We find that this NLP-based approach outperforms other popular techniques on a challenging malware dataset, with an HMM-Random Forest model yielding the best results.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Research Center for Informatics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computer Virology and Hacking Techniques
ISSN
2263-8733
e-ISSN
—
Volume of the periodical
2023
Issue of the periodical within the volume
October
Country of publishing house
FR - FRANCE
Number of pages
12
Pages from-to
1-12
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85174626188