Predicting weather with deep learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00375863" target="_blank" >RIV/68407700:21240/23:00375863 - isvavai.cz</a>
Result on the web
<a href="https://www.mlprague.com/prague2023/" target="_blank" >https://www.mlprague.com/prague2023/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Predicting weather with deep learning
Original language description
In this workshop we will implement train and test machine learning models that analyze satellite and weather radar data. You will get hands-on experience with the most common deep neural nets used for spatiotemporal predictions (e.g. UNet with some bells and whistles and convolutional recurrent nets). You will play with PyTorch implementation and analyze the results. You will understand the common pitfalls and reasons why the prediction fails.
Czech name
—
Czech description
—
Classification
Type
W - Workshop organization
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Event location
Praha
Event country
CZ - CZECH REPUBLIC
Event starting date
—
Event ending date
—
Total number of attendees
60
Foreign attendee count
50
Type of event by attendee nationality
WRD - Celosvětová akce