The number of primitive words of unbounded exponent in the language of an HD0L-system is finite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00374749" target="_blank" >RIV/68407700:21240/24:00374749 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jcta.2024.105904" target="_blank" >https://doi.org/10.1016/j.jcta.2024.105904</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcta.2024.105904" target="_blank" >10.1016/j.jcta.2024.105904</a>
Alternative languages
Result language
angličtina
Original language name
The number of primitive words of unbounded exponent in the language of an HD0L-system is finite
Original language description
Let H be an HD0L-system. We show that there are only finitely many primitive words v with the property that , for all integers k, is an element of the factorial language of H. In particular, this result applies to the set of all factors of a morphic word. We provide a formalized proof in the proof assistant Isabelle/HOL as part of the Combinatorics on Words Formalized project.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Combinatorial Theory, Series A
ISSN
0097-3165
e-ISSN
1096-0899
Volume of the periodical
206
Issue of the periodical within the volume
August
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
—
UT code for WoS article
001233246300001
EID of the result in the Scopus database
2-s2.0-85190785847