Sizes of Countable Sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375328" target="_blank" >RIV/68407700:21240/24:00375328 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1093/philmat/nkad021" target="_blank" >https://doi.org/10.1093/philmat/nkad021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/philmat/nkad021" target="_blank" >10.1093/philmat/nkad021</a>
Alternative languages
Result language
angličtina
Original language name
Sizes of Countable Sets
Original language description
The paper introduces the notion of size of countable sets, which preserves the Part-Whole Principle. The sizes of the natural and the rational numbers, their subsets, unions, and Cartesian products are algorithmically enumerable as sequences of natural numbers. The method is similar to that of Numerosity Theory, but in comparison it is motivated by Bolzano’s concept of infinite series, it is constructive because it does not use ultrafilters, and set sizes are uniquely determined. The results mostly agree, but some differ, such as the size of rational numbers. However, set sizes are only partially, not linearly, ordered. Quid pro quo.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Philosophia Mathematica
ISSN
0031-8019
e-ISSN
1744-6406
Volume of the periodical
32
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
82-114
UT code for WoS article
001124109900001
EID of the result in the Scopus database
2-s2.0-85185782581