All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine Learning Metrics for Network Datasets Evaluation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375340" target="_blank" >RIV/68407700:21240/24:00375340 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-56326-3_22" target="_blank" >https://doi.org/10.1007/978-3-031-56326-3_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-56326-3_22" target="_blank" >10.1007/978-3-031-56326-3_22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine Learning Metrics for Network Datasets Evaluation

  • Original language description

    High-quality datasets are an essential requirement for leveraging machine learning (ML) in data processing and recently in network security as well. However, the quality of datasets is overlooked or underestimated very often. Having reliable metrics to measure and describe the input dataset enables the feasibility assessment of a dataset. Imperfect datasets may require optimization or updating, e.g., by including more data and merging class labels. Applying ML algorithms will not bring practical value if a dataset does not contain enough information. This work addresses the neglected topics of dataset evaluation and missing metrics. We propose three novel metrics to estimate the quality of an input dataset and help with its improvement or building a new dataset. This paper describes experiments performed on public datasets to show the benefits of the proposed metrics and theoretical definitions for more straightforward interpretation. Additionally, we have implemented and published Python code so that the metrics can be adopted by the worldwide scientific community.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/VJ02010024" target="_blank" >VJ02010024: Flow-based Encrypted Traffic Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICT Systems Security and Privacy Protection

  • ISBN

    978-3-031-56326-3

  • ISSN

    1868-4238

  • e-ISSN

    1868-422X

  • Number of pages

    14

  • Pages from-to

    307-320

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Poznan

  • Event date

    Jun 14, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001294776100022