Social media bot detection using Dropout-GAN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00375930" target="_blank" >RIV/68407700:21240/24:00375930 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11416-024-00521-5" target="_blank" >https://doi.org/10.1007/s11416-024-00521-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11416-024-00521-5" target="_blank" >10.1007/s11416-024-00521-5</a>
Alternative languages
Result language
angličtina
Original language name
Social media bot detection using Dropout-GAN
Original language description
Bot activity on social media platforms is a pervasive problem, undermining the credibility of online discourse and potentially leading to cybercrime. We propose an approach to bot detection using Generative Adversarial Networks (GAN). We discuss how we overcome the issue of mode collapse by utilizing multiple discriminators to train against one generator, while decoupling the discriminator to perform social media bot detection and utilizing the generator for data augmentation. In terms of classification accuracy, our approach outperforms the state-of-the-art techniques in this field. We also show how the generator in the GAN can be used to evade such a classification technique.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computer Virology and Hacking Techniques
ISSN
2263-8733
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
4
Country of publishing house
FR - FRANCE
Number of pages
12
Pages from-to
669-680
UT code for WoS article
001215048300001
EID of the result in the Scopus database
2-s2.0-85192070760