All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Parameterised Distance to Local Irregularity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00378487" target="_blank" >RIV/68407700:21240/24:00378487 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.IPEC.2024.18" target="_blank" >https://doi.org/10.4230/LIPIcs.IPEC.2024.18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.IPEC.2024.18" target="_blank" >10.4230/LIPIcs.IPEC.2024.18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Parameterised Distance to Local Irregularity

  • Original language description

    A graph G is locally irregular if no two of its adjacent vertices have the same degree. The authors of [Fioravantes et al. Complexity of finding maximum locally irregular induced subgraph. SWAT, 2022] introduced and provided some initial algorithmic results on the problem of finding a locally irregular induced subgraph of a given graph G of maximum order, or, equivalently, computing a subset S of V(G) of minimum order, whose deletion from G results in a locally irregular graph; S is called an optimal vertex-irregulator of G. In this work we provide an in-depth analysis of the parameterised complexity of computing an optimal vertex-irregulator of a given graph G. Moreover, we introduce and study a variation of this problem, where S is a subset of the edges of G; in this case, S is denoted as an optimal edge-irregulator of G. We prove that computing an optimal vertex-irregulator of a graph G is in FPT when parameterised by various structural parameters of G, while it is W[1]-hard when parameterised by the feedback vertex set number or the treedepth of G. Moreover, computing an optimal edge-irregulator of a graph G is in FPT when parameterised by the vertex integrity of G, while it is NP-hard even if G is a planar bipartite graph of maximum degree 6, and W[1]-hard when parameterised by the size of the solution, the feedback vertex set or the treedepth of G. Our results paint a comprehensive picture of the tractability of both problems studied here.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004590" target="_blank" >EH22_008/0004590: Robotics and advanced industrial production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    19th International Symposium on Parameterized and Exact Computation (IPEC 2024)

  • ISBN

    978-3-95977-353-9

  • ISSN

  • e-ISSN

  • Number of pages

    15

  • Pages from-to

    "18:1"-"18:15"

  • Publisher name

    Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik

  • Place of publication

    Dagstuhl

  • Event location

    Egham

  • Event date

    Sep 4, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article