Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F24%3A00380559" target="_blank" >RIV/68407700:21240/24:00380559 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.15439/2024F5990" target="_blank" >https://doi.org/10.15439/2024F5990</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15439/2024F5990" target="_blank" >10.15439/2024F5990</a>
Alternative languages
Result language
angličtina
Original language name
Combining Local and Global Weather Data to Improve Forecast Accuracy for Agriculture
Original language description
Accurate local weather forecasting is vital for farmers to optimize crop yields and manage resources effectively, but existing forecasts often lack the precision required locally. This study explores the potential of combining data from local weather stations with global forecasts and reanalysis data to improve the accuracy of local weather predictions. We propose integrating the HadISD data set, which contains data from 27 stations in the Czech Republic, with the Global Forecast System predictions and ERA5-Land reanalysis data. Our goal is to improve 24-hour weather forecasts using Multilayer Perceptrons, CatBoost, and Long Short-Term Memory neural networks. The findings demonstrate that combining local weather station data with global forecasts and incorporating ERA5-Land reanalysis data improves the accuracy of weather predictions in specific locations. Notably, using deep learning to estimate ERA5-Land data and including this estimation in the final model reduced the forecasting error by 59%. This advancement holds promise in optimizing agricultural practices and mitigating weather-related risks in the region.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Communication Papers of the 19th Conference on Computer Science and Intelligence Systems
ISBN
978-83-973291-0-2
ISSN
2300-5963
e-ISSN
2300-5963
Number of pages
6
Pages from-to
77-82
Publisher name
Institute of Electrical and Electronics Engineers Inc.
Place of publication
—
Event location
Belgrade
Event date
Sep 8, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—