Recursive state estemation for hybrid systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F12%3A00195259" target="_blank" >RIV/68407700:21260/12:00195259 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.apm.2011.08.042" target="_blank" >http://dx.doi.org/10.1016/j.apm.2011.08.042</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apm.2011.08.042" target="_blank" >10.1016/j.apm.2011.08.042</a>
Alternative languages
Result language
angličtina
Original language name
Recursive state estemation for hybrid systems
Original language description
The paper deals with recursive state estimation for hybrid systems. An unobservable state of such systems is changed both in a continuous and a discrete way. Fast and efficient online estimation of hybrid system state is desired in many application areas. The presented paper proposes to look at this problem via Bayesian filtering in the factorized (decomposed) form. General recursive solution is proposed as the probability density function, updated entry-wise. The paper summarizes general factorized filter specialized for (i) normal state-space models; (ii) multinomial state-space models with discrete observations; and (iii) hybrid systems. Illustrative experiments and comparison with one of the counterparts are provided.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematical Modelling
ISSN
0307-904X
e-ISSN
—
Volume of the periodical
36
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
1347-1356
UT code for WoS article
000300120900001
EID of the result in the Scopus database
—