All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iterated Non-linerar Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F14%3A00225553" target="_blank" >RIV/68407700:21260/14:00225553 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iterated Non-linerar Regression

  • Original language description

    The paper presents iterated algorithm for parameter estimation of non-linear regression model. The non-linear model is firstly approximated by a polynomial. Afterwards, parameter estimation based on measured data is taken as the initial value for the proposed iterated algorithm. As the estimation method, the well-known Least Square Estimation (LSE), artificial neural networks (ANN) or Bayesian methodology (BM) can be used. With respect to the knowledge of initial parameters the measured data are transformed to meet best the non-linear regression criteria (orthogonal data projection). The original and transformed data are used in the next step of the designed iterated algorithm to receive better parameter estimation. The iteration is repeated until thealgorithm converges into a final result. The proposed methodology can be applied on all non-linear models that could be approximated by a polynomial function. The illustrative examples show the convergence of the designed iterated algorit

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    10

  • Pages from-to

    411-420

  • UT code for WoS article

    000341614500006

  • EID of the result in the Scopus database