Iterated Non-linerar Regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F14%3A00225553" target="_blank" >RIV/68407700:21260/14:00225553 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Iterated Non-linerar Regression
Original language description
The paper presents iterated algorithm for parameter estimation of non-linear regression model. The non-linear model is firstly approximated by a polynomial. Afterwards, parameter estimation based on measured data is taken as the initial value for the proposed iterated algorithm. As the estimation method, the well-known Least Square Estimation (LSE), artificial neural networks (ANN) or Bayesian methodology (BM) can be used. With respect to the knowledge of initial parameters the measured data are transformed to meet best the non-linear regression criteria (orthogonal data projection). The original and transformed data are used in the next step of the designed iterated algorithm to receive better parameter estimation. The iteration is repeated until thealgorithm converges into a final result. The proposed methodology can be applied on all non-linear models that could be approximated by a polynomial function. The illustrative examples show the convergence of the designed iterated algorit
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
4
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
10
Pages from-to
411-420
UT code for WoS article
000341614500006
EID of the result in the Scopus database
—