Mixture-based cluster detection in driving-related data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F15%3A00231582" target="_blank" >RIV/68407700:21260/15:00231582 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/SCSP.2015.7181548" target="_blank" >http://dx.doi.org/10.1109/SCSP.2015.7181548</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCSP.2015.7181548" target="_blank" >10.1109/SCSP.2015.7181548</a>
Alternative languages
Result language
angličtina
Original language name
Mixture-based cluster detection in driving-related data
Original language description
The paper deals with detection of clusters in data measured on a driven vehicle. Such a clustering aims at distinguishing various driving styles for eco-driving and driver assistance systems. The task is solved with the help of the application of the recursive Bayesian mixture estimation theory. The main contribution of the paper is a demonstration that real measurements with non-linear relations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2015 Smart Cities Symposium Prague (SCSP)
ISBN
978-1-4673-6727-1
ISSN
—
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
IEEE Press
Place of publication
New York
Event location
Prague
Event date
Jun 24, 2015
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—