PHYSICS-INFORMATION ANALOGIES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F18%3A00348856" target="_blank" >RIV/68407700:21260/18:00348856 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21730/18:00348856
Result on the web
<a href="https://doi.org/10.14311/NNW.2018.28.030" target="_blank" >https://doi.org/10.14311/NNW.2018.28.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2018.28.030" target="_blank" >10.14311/NNW.2018.28.030</a>
Alternative languages
Result language
angličtina
Original language name
PHYSICS-INFORMATION ANALOGIES
Original language description
The paper presents a theory of information systems based on advanced analogies with both classical and quantum physical models. In the first step the information analogies with magneto-electric circuits are introduced and the information parameters are defined under this inspiration. Well-known potential and flow values (e.g. potential and kinetic energy, voltage and electrical current, etc.) are transformed into information values, "information content" and "information flow". In the second step the quantum information models are introduced together with values "wave information flow" and "wave information content". By using these variables, the complex information models are described in more detail together with illustrative examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Neural Network World
ISSN
1210-0552
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
16
Pages from-to
535-550
UT code for WoS article
000457134000004
EID of the result in the Scopus database
2-s2.0-85061509078