Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F23%3A00379364" target="_blank" >RIV/68407700:21260/23:00379364 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.matdes.2023.112128" target="_blank" >https://doi.org/10.1016/j.matdes.2023.112128</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2023.112128" target="_blank" >10.1016/j.matdes.2023.112128</a>
Alternative languages
Result language
angličtina
Original language name
Design exploration of additively manufactured chiral auxetic structure using explainable machine learning
Original language description
A design exploration of hexachiral structures using explainable machine learning (ML) is performed in this work. The hexachiral structures are fabricated using resin via vat photopolymerization (VPP). The ML model is used to build the function that explains the association between Poisson’s ratio and the hexachiral design parameters. The data set for ML model construction is first collected by using the Halton sequence and simulated using the finite element method (FEM). To validate the data set, the results obtained from the FEM simulation are compared with those obtained from the compression test. The Gaussian Process Regression (GPR) models for Poisson’s ratio and porosity are constructed to extract important design insight. A Global Sensitivity Analysis (GSA) and Shapley Additive Explanations (SHAP) are used to analyze the sensitivity of the porosity and Poisson’s ratio to the hexachiral design parameters. GSA result shows that the strut’s thickness is the most decisive parameter that affects the Poisson’s ratio. The application of SHAP also reveals that the relationship between the strut thickness and Poisson’s ratio is nonlinear. Finally, the minimum Poisson’s ratio value is achieved by design with minimum strut thickness, minimum node radius, and maximum strut length.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Engineering applications of microworld physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Materials & Design
ISSN
0264-1275
e-ISSN
1873-4197
Volume of the periodical
232
Issue of the periodical within the volume
08
Country of publishing house
GB - UNITED KINGDOM
Number of pages
13
Pages from-to
1-13
UT code for WoS article
001147650600001
EID of the result in the Scopus database
2-s2.0-85164717707