All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dynamic characterisation of novel three-dimensional axisymmetric chiral auxetic structure

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00373283" target="_blank" >RIV/68407700:21260/24:00373283 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.compstruct.2024.117949" target="_blank" >https://doi.org/10.1016/j.compstruct.2024.117949</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compstruct.2024.117949" target="_blank" >10.1016/j.compstruct.2024.117949</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dynamic characterisation of novel three-dimensional axisymmetric chiral auxetic structure

  • Original language description

    The study presents an extensive mechanical and computational characterisation of novel cellular metamaterial with axisymmetric chiral structure (ACS) at different strain rates. The Direct Impact Hopkinson Bar (DIHB) testing device was used for impact testing up to 21 m/s striker speed, which was insufficient to reach the shock deformation regime. Thus, using computational simulations to estimate the structure behaviour at high strain rates was necessary. Experimental and computational results showed that all ACS structures exhibit a nominal stress–strain relationship typical for cellular materials. As the loading conditions shifted to a dynamic regime, the micro–inertia effect became increasingly pronounced, leading to a corresponding rise in structure stiffness. The Poisson's ratio in all ACS increases gradually, making them superior to traditional cellular materials, which experience a sudden increase in Poisson's ratio during loading. Additionally, the study found that the structures exhibited a rise in the auxetic effect with an increase in strain rate, highlighting the benefits of axisymmetric structures in high-loading regimes. Overall, the obtained results provide valuable insights into the mechanical properties of ACS under different loading regimes and will contribute to further design improvements and the fabrication of novel ACS metamaterials.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GM22-18033M" target="_blank" >GM22-18033M: High velocity impact dynamics with fast and flash X-ray radiography</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Composite Structures

  • ISSN

    0263-8223

  • e-ISSN

    1879-1085

  • Volume of the periodical

    333

  • Issue of the periodical within the volume

    Duben

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    001180869000001

  • EID of the result in the Scopus database

    2-s2.0-85184138780