All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

UNDERSTANDING TRAVEL BEHAVIOR: A DEEP NEURAL NETWORK AND SHAP APPROACH TO MODE CHOICE DETERMINANTS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F24%3A00378842" target="_blank" >RIV/68407700:21260/24:00378842 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.14311/NNW.2024.34.012" target="_blank" >https://doi.org/10.14311/NNW.2024.34.012</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/NNW.2024.34.012" target="_blank" >10.14311/NNW.2024.34.012</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    UNDERSTANDING TRAVEL BEHAVIOR: A DEEP NEURAL NETWORK AND SHAP APPROACH TO MODE CHOICE DETERMINANTS

  • Original language description

    Understanding individual travel behavior is crucial for developing effective travel demand management strategies and informed transportation policies. This study investigates the factors influencing individuals’ mode choices by analyzing data from a comprehensive travel survey. We employ a deep neural network model to explore the relationships between survey variables and respondents’ transportation mode preferences, focusing on both observable and latent factors. The SHAP method is applied to interpret the model’s outputs, providing global and local explanations that offer detailed insights into the contribution of each variable to mode choice decisions. By identifying the key determinants of mode selection and uncovering the complex interactions between these factors, this research provides valuable insights for designing targeted policies that can better address transportation needs and influence sustainable travel behavior.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neural Network World

  • ISSN

    1210-0552

  • e-ISSN

    2336-4335

  • Volume of the periodical

    34

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    23

  • Pages from-to

    219-241

  • UT code for WoS article

    001387819600001

  • EID of the result in the Scopus database