Nonparametric density estimates consistent of the order of n(-1/2) in the L-1-norm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F04%3A00164499" target="_blank" >RIV/68407700:21340/04:00164499 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s001840300286" target="_blank" >http://dx.doi.org/10.1007/s001840300286</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s001840300286" target="_blank" >10.1007/s001840300286</a>
Alternative languages
Result language
angličtina
Original language name
Nonparametric density estimates consistent of the order of n(-1/2) in the L-1-norm
Original language description
We introduce an approximate minimum Kolmogorov distance density estimate f_n of a probability density f_0 on the real line and study its rate of consistency for n to infty. We define a degree of variations of a nonparametric family D of densities containing the unknown f_0. If this degree is finite then the approximate minimum Kolmogorov distance estimate is consistent of the order of n{-1/2} in the L1-norm and also in the expected L1-norm. Comparisons with two other criteria leading to the same orderof consistency are given.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Metrika
ISSN
0026-1335
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000222389900001
EID of the result in the Scopus database
—