Aritmetics on beta-expansion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F04%3A04105339" target="_blank" >RIV/68407700:21340/04:04105339 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Aritmetics on beta-expansion
Original language description
In this paper we consider representation of numbers in an irrational basis $beta>1$. We study the arithmetic operations on $beta$-expansions and provide bounds on the number of fractional digits arising in addition and multiplication, $L_oplus(beta)$and $L_odot(beta)$, respectively. We determine these bounds for irrational numbers $beta$ which are algebraic with at least one conjugate in modulus smaller than 1. In the case of a Pisot number $beta$ we derive the relation between $beta$-integersand cut-and-project sequences and then use the properties of cut-and-project sequences to estimate $L_oplus(beta)$ and $L_odot(beta)$. We generalize the results known for quadratic Pisot units to other quadratic Pisot numbers.
Czech name
Aritmetics on beta-expansion
Czech description
In this paper we consider representation of numbers in an irrational basis $beta>1$. We study the arithmetic operations on $beta$-expansions and provide bounds on the number of fractional digits arising in addition and multiplication, $L_oplus(beta)$and $L_odot(beta)$, respectively. We determine these bounds for irrational numbers $beta$ which are algebraic with at least one conjugate in modulus smaller than 1. In the case of a Pisot number $beta$ we derive the relation between $beta$-integersand cut-and-project sequences and then use the properties of cut-and-project sequences to estimate $L_oplus(beta)$ and $L_odot(beta)$. We generalize the results known for quadratic Pisot units to other quadratic Pisot numbers.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F01%2F0130" target="_blank" >GA201/01/0130: Some aspects of quantum group and self-similar aperiodic structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2004
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Arith
ISSN
0065-1036
e-ISSN
—
Volume of the periodical
112
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
23-40
UT code for WoS article
—
EID of the result in the Scopus database
—