All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Aritmetics on beta-expansion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F04%3A04105339" target="_blank" >RIV/68407700:21340/04:04105339 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Aritmetics on beta-expansion

  • Original language description

    In this paper we consider representation of numbers in an irrational basis $beta>1$. We study the arithmetic operations on $beta$-expansions and provide bounds on the number of fractional digits arising in addition and multiplication, $L_oplus(beta)$and $L_odot(beta)$, respectively. We determine these bounds for irrational numbers $beta$ which are algebraic with at least one conjugate in modulus smaller than 1. In the case of a Pisot number $beta$ we derive the relation between $beta$-integersand cut-and-project sequences and then use the properties of cut-and-project sequences to estimate $L_oplus(beta)$ and $L_odot(beta)$. We generalize the results known for quadratic Pisot units to other quadratic Pisot numbers.

  • Czech name

    Aritmetics on beta-expansion

  • Czech description

    In this paper we consider representation of numbers in an irrational basis $beta>1$. We study the arithmetic operations on $beta$-expansions and provide bounds on the number of fractional digits arising in addition and multiplication, $L_oplus(beta)$and $L_odot(beta)$, respectively. We determine these bounds for irrational numbers $beta$ which are algebraic with at least one conjugate in modulus smaller than 1. In the case of a Pisot number $beta$ we derive the relation between $beta$-integersand cut-and-project sequences and then use the properties of cut-and-project sequences to estimate $L_oplus(beta)$ and $L_odot(beta)$. We generalize the results known for quadratic Pisot units to other quadratic Pisot numbers.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F01%2F0130" target="_blank" >GA201/01/0130: Some aspects of quantum group and self-similar aperiodic structures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2004

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Arith

  • ISSN

    0065-1036

  • e-ISSN

  • Volume of the periodical

    112

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    23-40

  • UT code for WoS article

  • EID of the result in the Scopus database