Absolute Continuity of the Spectrum for Periodically Modulated Leaky Wires in R^3
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F07%3A04133573" target="_blank" >RIV/68407700:21340/07:04133573 - isvavai.cz</a>
Alternative codes found
RIV/61389005:_____/07:00096360
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Absolute Continuity of the Spectrum for Periodically Modulated Leaky Wires in R^3
Original language description
We consider a model of leaky quantum wires in three dimensions. The Hamiltonian is a singular perturbation of the Laplacian supported by a line with the coupling which is bounded and periodically modulated along the line. We demonstrate that such a system has a purely absolutely continuous spectrum and its negative part has band structure with an at most finite number of gaps. This result is extended also to the situation when there is an infinite number of the lines supporting the perturbations arranged periodically in one direction.
Czech name
Absolutní spojitost spectra pro periodicky modulované měkké dráty v R^3
Czech description
Pro měkký kvantový graf ve třech dimensích, jenž je periodický, dokazujeme absolutní spojitost spektra.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Henri Poincare
ISSN
1424-0637
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
241-263
UT code for WoS article
—
EID of the result in the Scopus database
—