On the harmonic oscillator on the Lobachevsky plane
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F07%3A04136002" target="_blank" >RIV/68407700:21340/07:04136002 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the harmonic oscillator on the Lobachevsky plane
Original language description
We introduce the harmonic oscillator on the Lobachevsky plane with the aid of the potential V (r) = (a^2 w^2/4) sinh(r/a)^2 , where a is the curvature radius and r is the geodesic distance from a chosen center. Thus, the potential is rotationally symmetric and unbounded, as in the Euclidean case. The eigenvalue equation leads to the differential equation of spheroidal functions. We provide a basic numerical analysis of eigenvalues and eigenfunctions provided that the value of the angular momentum, m, isequal to 0.
Czech name
Není k dispozici
Czech description
Není k dispozici
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F0857" target="_blank" >GA201/05/0857: Application of algebraical and functional analytical methods in mathematical physics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Russian Journal of Mathematical Physics
ISSN
1061-9208
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
4
Country of publishing house
RU - RUSSIAN FEDERATION
Number of pages
5
Pages from-to
493-497
UT code for WoS article
—
EID of the result in the Scopus database
—