Feynman's path integral and mutually unbiased bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F09%3A00159256" target="_blank" >RIV/68407700:21340/09:00159256 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Feynman's path integral and mutually unbiased bases
Original language description
Our previous work on quantum mechanics in Hilbert spaces of finite dimension N is applied to elucidate the deep meaning of Feynman's path integral pointed out by G Svetlichny. He speculated that the secret of the Feynman path integral may lie in the property of mutual unbiasedness of temporally proximal bases. We confirm the corresponding property of the short-time propagator by using a specially devised N x N approximation of quantum mechanics in L-2(R) applied to our finite-dimensional analogue of a free quantum particle.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics A: Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
24
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
—
UT code for WoS article
000266457600019
EID of the result in the Scopus database
—