Critical Exponent of Infinite Words Coding Beta-integers Associated with Non-simple Parry Numbers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00174625" target="_blank" >RIV/68407700:21340/11:00174625 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21240/11:00174625
Result on the web
<a href="http://www.integers-ejcnt.org/vol11b.html" target="_blank" >http://www.integers-ejcnt.org/vol11b.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Critical Exponent of Infinite Words Coding Beta-integers Associated with Non-simple Parry Numbers
Original language description
In this paper, we study the critical exponent of infinite words u coding beta- integers for beta being a non-simple Parry number. In other words, we investigate the maximal consecutive repetitions of factors that occur in the infinite word in question. We calculate also the ultimate critical exponent that expresses how long repetitions occur in the infinite word u when the factors of length growing ad infinitum are considered. The basic ingredients of our method are the description of all bispecial factors of u and the notion of return words. This method can be applied to any fixed point of any primitive substitution.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Integers: Electronic Journal of Combinatorial Number Theory
ISSN
1553-1732
e-ISSN
—
Volume of the periodical
11b
Issue of the periodical within the volume
—
Country of publishing house
US - UNITED STATES
Number of pages
25
Pages from-to
1-25
UT code for WoS article
—
EID of the result in the Scopus database
—