Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F11%3A00174679" target="_blank" >RIV/68407700:21340/11:00174679 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/1367-2630/13/1/013001/pdf/1367-2630_13_1_013001.pdf" target="_blank" >http://iopscience.iop.org/1367-2630/13/1/013001/pdf/1367-2630_13_1_013001.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1367-2630/13/1/013001" target="_blank" >10.1088/1367-2630/13/1/013001</a>
Alternative languages
Result language
angličtina
Original language name
Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation
Original language description
Quantum walks have emerged as an interesting alternative to the usual circuit model for quantum computing. While still universal for quantum computing, the quantum walk model has very different physical requirements, which lends itself more naturally tosome physical implementations, such as linear optics. In this paper, we discuss generalizing the model of discrete time quantum walks to the case of an arbitrary number of walkers acting on arbitrary graph structures. We present a formalism that allows for the analysis of such situations, and several example scenarios for how our techniques can be applied. We consider the most important features of quantum walks-measurement, distinguishability, characterization and the distinction between classical andquantum interference. We also discuss the potential for physical implementation in the context of linear optics, which is of relevance to present-day experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC06002" target="_blank" >LC06002: Doppler Institute for Mathematical Physics and Applied Mathematics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
New Journal of Physics
ISSN
1367-2630
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
"nečíslov. (ArtNo=013001)"
UT code for WoS article
000288903600001
EID of the result in the Scopus database
—