Numbers with integer expansion in the system with negative base
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00186826" target="_blank" >RIV/68407700:21340/12:00186826 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.7169/facm/2012.47.2.8" target="_blank" >http://dx.doi.org/10.7169/facm/2012.47.2.8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7169/facm/2012.47.2.8" target="_blank" >10.7169/facm/2012.47.2.8</a>
Alternative languages
Result language
angličtina
Original language name
Numbers with integer expansion in the system with negative base
Original language description
In this paper, we study representations of real numbers in the positional numeration system with negative basis, as introduced by Ito and Sadahiro. We focus on the set $Z_{-beta}$ of numbers whose representation uses only non-negative powers of $-beta$, the so-called $(-beta)$-integers. We describe the distances between consecutive elements of $Z_{-beta}$. In case that this set is non-trivial we associate to $beta$ an infinite word $boldsymbol{v}_{-beta}$ over an (in general infinite) alphabet.The self-similarity of $Z_{-beta}$, i.e., the property $-betaZ_{-beta}subset Z_{-beta}$, allows us to find a morphism under which $boldsymbol{v}_{-beta}$ is invariant. On the example of two cubic irrational bases $beta$ we demonstrate the difference between Rauzy fractals generated by $(-beta)$-integers and by $beta$-integers.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Functiones et Approximatio, Commentarii Mathematici
ISSN
0208-6573
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
26
Pages from-to
241-266
UT code for WoS article
—
EID of the result in the Scopus database
—