Poisson sigma models and Lie bialgebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00189919" target="_blank" >RIV/68407700:21340/12:00189919 - isvavai.cz</a>
Result on the web
<a href="http://iopscience.iop.org/1742-6596/343/1/012094/" target="_blank" >http://iopscience.iop.org/1742-6596/343/1/012094/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/343/1/012094" target="_blank" >10.1088/1742-6596/343/1/012094</a>
Alternative languages
Result language
angličtina
Original language name
Poisson sigma models and Lie bialgebras
Original language description
A description of the Poisson sigma-model is given together with the sigma-models connected by the Poisson-Lie T-duality transformation. Common algebraic structures are emphasized as the models are investigated from the geometrical point of view and the possibility of introducing the duality transformation of Poisson-Lie sigma-models is discussed. A general method, which enables one to construct Poisson-Lie sigma model on every Lie bialgebra is given. The correspondence to the the R^2 gravity action is shown as well as other physically relevant examples of Poisson-Lie sigma models.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC527" target="_blank" >LC527: Center for Particle Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Physics: Conference Series (JPCS
ISSN
1742-6588
e-ISSN
—
Volume of the periodical
343
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
1-7
UT code for WoS article
—
EID of the result in the Scopus database
—