Nonabelian Dualization of Plane Wave Backgrounds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F12%3A00195767" target="_blank" >RIV/68407700:21340/12:00195767 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4236/jmp.2012.39143" target="_blank" >http://dx.doi.org/10.4236/jmp.2012.39143</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4236/jmp.2012.39143" target="_blank" >10.4236/jmp.2012.39143</a>
Alternative languages
Result language
angličtina
Original language name
Nonabelian Dualization of Plane Wave Backgrounds
Original language description
We investigate plane--parallel wave metrics from the point of view of their (Poisson--Lie) T--dualizability. For that purpose we reconstruct the metrics as backgrounds of nonlinear sigma models on Lie groups. For construction of dual backgrounds we use Drinfel'd doubles obtained from the isometry groups of the metrics. We find dilaton fields that enable to satisfy the vanishing beta equations for the duals of the homogenous plane--parallel wave metric. Torsion potentials or $B$--fields, invariant w.r.t.the isometry group of Lobachevski plane waves are obtained by the Drinfel'd double construction. We show that a certain kind of plurality, different from the (atomic) Poisson--Lie T--plurality, may exist in case that metrics admit several isometry subgroups having the dimension of the Riemannian manifold. An example of that are two different backgrounds dual to the homogenous plane--parallel wave metric.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC527" target="_blank" >LC527: Center for Particle Physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Modern Physics
ISSN
2153-1196
e-ISSN
—
Volume of the periodical
3
Issue of the periodical within the volume
09
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1088-1095
UT code for WoS article
—
EID of the result in the Scopus database
—