Small area estimation under random regression coefficient models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F13%3A00199082" target="_blank" >RIV/68407700:21340/13:00199082 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/00949655.2012.684094" target="_blank" >http://dx.doi.org/10.1080/00949655.2012.684094</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/00949655.2012.684094" target="_blank" >10.1080/00949655.2012.684094</a>
Alternative languages
Result language
angličtina
Original language name
Small area estimation under random regression coefficient models
Original language description
Statistical agencies are interested to report precise estimates of linear parameters from small areas. This goal can be achieved by using model-based inference. In this sense, random regression coefficient models provide a flexible way of modelling the relationship between the target and the auxiliary variables. Because of this, empirical best linear unbiased predictor (EBLUP) estimates based on these models are introduced. A closed-formula procedure to estimate the mean-squared error of the EBLUP estimators is also given and empirically studied. Results of several simulation studies are reported as well as an application to the estimation of household normalized net annual incomes in the Spanish Living Conditions Survey.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Statistical Computation and Simulation
ISSN
0094-9655
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
2160-2177
UT code for WoS article
000325451100011
EID of the result in the Scopus database
—